dyadic operation - significado y definición. Qué es dyadic operation
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es dyadic operation - definición

MATHEMATICAL OPERATION THAT COMBINES TWO ELEMENTS TO PRODUCE ANOTHER ELEMENT
BinaryOperation; Binary operations; Binary operator; External operation; Binary operad; Dyadic function; Dyadic operation; Partial operation; Binary operators; Dyadic functor; Binary functor; External binary operation; Internal binary operation
  • A binary operation <math>\circ</math> is a rule for combining the arguments <math>x</math> and <math>y</math> to produce <math>x\circ y</math>

Binary operation         
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
dyadic         
WIKIMEDIA DISAMBIGUATION PAGE
Dyadic (disambiguation)
<programming> binary (describing an operator). Compare monadic. (1998-07-24)
Operation (mathematics)         
MATHEMATICAL PROCEDURE WHICH PRODUCES A RESULT FROM ZERO OR MORE INPUT VALUES
Finitary operation; Mathematical operation; Math operations; Mathematical operations; Math operation; Operations on numbers; Internal operation; Multioperation
In mathematics, an operation is a function which takes zero or more input values (also called "operands" or "arguments") to a well-defined output value. The number of operands is the arity of the operation.

Wikipedia

Binary operation

In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.

More specifically, an internal binary operation on a set is a binary operation whose two domains and the codomain are the same set. Examples include the familiar arithmetic operations of addition, subtraction, and multiplication. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups.

An operation of arity two that involves several sets is sometimes also called a binary operation. For example, scalar multiplication of vector spaces takes a scalar and a vector to produce a vector, and scalar product takes two vectors to produce a scalar. Such binary operations may be called simply binary functions.

Binary operations are the keystone of most algebraic structures that are studied in algebra, in particular in semigroups, monoids, groups, rings, fields, and vector spaces.